The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury.
نویسندگان
چکیده
BACKGROUND Lung injury is often studied without consideration for pathologic changes in the chest wall. In order to reduce the incidence of lung injury using preemptive mechanical ventilation, it is important to recognize the influence of altered chest wall mechanics on disease pathogenesis. In this study, we hypothesize that airway pressure release ventilation (APRV) may be able to reduce the chest wall elastance associated with an extrapulmonary lung injury model as compared with low tidal volume (LVt) ventilation. METHODS Female Yorkshire pigs were anesthetized and instrumented. Fecal peritonitis was established, and the superior mesenteric artery was clamped for 30 min to induce an ischemia/reperfusion injury. Immediately following injury, pigs were randomized into (1) LVt (n = 3), positive end-expiratory pressure (PEEP) 5 cmH2O, V t 6 cc kg(-1), FiO2 21 %, and guided by the ARDSnet protocol or (2) APRV (n = 3), P High 16-22 cmH2O, P Low 0 cmH2O, T High 4.5 s, T Low set to terminate the peak expiratory flow at 75 %, and FiO2 21 %. Pigs were monitored continuously for 48 h. Lung samples and bronchoalveolar lavage fluid were collected at necropsy. RESULTS LVt resulted in mild acute respiratory distress syndrome (ARDS) (PaO2/FiO2 = 226.2 ± 17.1 mmHg) whereas APRV prevented ARDS (PaO2/FiO2 = 465.7 ± 66.5 mmHg; p < 0.05). LVt had a reduced surfactant protein A concentration and increased histologic injury as compared with APRV. The plateau pressure in APRV (34.3 ± 0.9 cmH2O) was significantly greater than LVt (22.2 ± 2.0 cmH2O; p < 0.05) yet transpulmonary pressure between groups was similar (p > 0.05). This was because the pleural pressure was significantly lower in LVt (7.6 ± 0.5 cmH2O) as compared with APRV (17.4 ± 3.5 cmH2O; p < 0.05). Finally, the elastance of the lung, chest wall, and respiratory system were all significantly greater in LVt as compared with APRV (all p < 0.05). CONCLUSIONS APRV preserved surfactant and lung architecture and maintenance of oxygenation. Despite the greater plateau pressure and tidal volumes in the APRV group, the transpulmonary pressure was similar to that of LVt. Thus, the majority of the plateau pressure in the APRV group was distributed as pleural pressure in this extrapulmonary lung injury model. APRV maintained a normal lung elastance and an open, homogeneously ventilated lung without increasing lung stress.
منابع مشابه
Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension
Intra-abdominal hypertension (IAH) may co-occur with the acute respiratory distress syndrome (ARDS), with significant impact on morbidity and mortality. Lung-protective controlled mechanical ventilation with low tidal volume and positive end-expiratory pressure (PEEP) has been recommended in ARDS. However, mechanical ventilation with spontaneous breathing activity may be beneficial to lung func...
متن کاملComparison of the Effects of Prone and Supine Positions on Abdominal Distention in the Premature Infants Receiving Nasal Continuous Positive Airway Pressure (NCPAP)
Background: Premature infants with respiratory distress syndrome (RDS) are in dire need of respiratory support with a ventilator. However, the high tidal volume of mechanical ventilation may cause lung injury, and researchers have been concerned with the use of nasal continuous positive airway pressure (NCPAP). NCPAP has concomitant side effects, such as abdominal distention, which might disrup...
متن کاملNew modalities of mechanical ventilation: high-frequency oscillatory ventilation and airway pressure release ventilation.
Management of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) is largely supportive, with the use of mechanical ventilation being a central feature. Recent advances in the understanding of ALI/ARDS and mechanical ventilation have revealed that lung-protective ventilation strategies may attenuate ventilator-associated lung injury and improve patient morbidity/mortality...
متن کاملCombined Effects of Ventilation Mode and Positive End-Expiratory Pressure on Mechanics, Gas Exchange and the Epithelium in Mice with Acute Lung Injury
The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (V(T)) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that...
متن کاملEffects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury.
STUDY OBJECTIVES To evaluate the effects of spontaneous breathing at ambient airway pressure (Paw) and during airway pressure release ventilation (APRV) on respiratory work and respiratory muscle blood flow (RMBF) in experimental lung injury. DESIGN Prospective experimental study. SETTING Research laboratory of a university hospital. SUBJECTS Twelve hemodynamically stable, analgosedated, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intensive care medicine experimental
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2015